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Possibly exact fractal dimensions from conformal invariance 
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Received 3 November 1986 

Abstract. Based on an equivalence between the q-state Potts model and conformally 
invariant field theories, we speculate that all fractal dimensionalities of two-dimensional 
percolation are given by the formula D = (100-x2)/48, where x is an integer. The same 
formula should also apply to self-avoiding walks and lattice animals. This approach is 
extended to cluster-weighted percolation. Our conjecture seems to agree with previous 
exact and numerical results except for the backbone exponent, and possibly for lattice 
animals. 

It has long been known that percolation corresponds to the q = 1 limit of the q-state 
Potts model (Kasteleyn and Fortuin 1969). In particular, the fractal dimensionalities 
of the incipient infinite cluster equals the magnetic scaling power, Df = Y h  = $ in two 
dimensions (Stanley 1977), while that of the singly connected ('red') bonds is given 
by the thermal exponent, Dred = y ,  = $ (Coniglio 1981, 1982). The dimensionalities of 
several other subsets of the percolation cluster have been measured, such as that of 
the backbone (D,,), the minimal path or chemical distance ( Dmin), the hull ( DH), the 
unscreened (external) perimeter (D") ,  the elastic backbone or collection of minimal 
paths (DEBB) and the internal dangling bond (0,). For the definitions of these and 
other subsets, see e.g. Stanley (1984) and Grossman and Aharony (1986). 

Recently, a new approach to 2~ spin models has been initiated, based on conformal 
invariance (Belavin et a1 1984a, b, Dotsenko and Fateev 1984, Friedan et a1 1984). 
The key observation is that a spin model at the critical temperature is not only invariant 
under global scale transformations, but also under local, conformal transformations, 
which change length scales locally but preserve angles (Polyakov 1970). In two 
dimensions, conformal invariance is sufficient to uniquely determine all critical 
exponents, as soon as one has identified the universality class of the model. The 
universality classes can be labelled by one real number, the central charge c. For 
so-called minimal theories (including a countably infinite set of Potts models), the 
conformal dimensions are given by the Kac formula (Kac 1979, Dotsenko and Fateev 
1984) 

( p n  - km)* - ( k  - p)' 

4Pk 
A n m  = 

where 

k = 2 N  p = 2 N - 1  

and (Temperley and Lieb 1971, Baxter et a1 1976, Dotsenko and Fateev 1984) 

q ' I2  = 2 COS( r / 2 N )  1 s N ~ w .  
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As usual, q is the number of Potts states. The corresponding value of the central 
charge is 

C =  1-6/2N(2N-1) .  

In particular, percolation corresponds to q = 1,  N = $ and c = 0. Since percolation in 
this way is closely related to a conformal field theory, we conjecture that the fractal 
dimensionalities of all subsets of the percolation cluster follow from ( l ) ,  with N = 5. 
In two dimensions, a fractal dimension D is related to a conformal dimension A by 

D = 2 - 2 A  

because all correlation functions at the critical point decay as 
G( ,.) - r - 2 ( 2 - D )  - ,.-4.4 

For minimal theories, which have N integer, the parameters n and m in the Kac 
formula (1) are integers. This gives only a few possibilities for the conformal 
dimensions. For non-minimal theories, such as N = 4, no such statement can be made. 
However, we have recently investigated an interacting percolation problem, cluster- 
weighted percolation (CWP) (Larsson 1986, Hu 1984), which is a percolation formula- 
tion of the Potts model for arbitrary q. We can define the same subsets of the 
cluster-weighted percolation cluster as in ordinary percolation. If we assume that the 
dimensionalities for these fractals depend smoothly and simply on N, n and m must 
be functions of N which reduce to integers for N integer. Specifically, we will consider 

n, m = 1 , 2 , 3  

n, m = 2 N, 2 N - 1,2  N - 2 , 2  N - 3 (2) 

n, m = N, N f 1,  N f 2, N f 3.  

What are the consequences of this conjecture? Setting k = 3, p = 2, n = i/2 and 
m = j / 2  in ( l ) ,  we obtain 

A = (x’ - 4)/96 

or 

D = 2 - 2A = (100 - x2)/48 ( 3 )  

where x = 2i - 3 j  is an integer. The possible values for D (with 0 d D d 2) are given 
in table 1. In particular, for x = 3 we get D = 2 = Df, and for x = 8, D = = Dred. 

In fact, there are other well known models which correspond to N = $. The O( n )  
model (at least on a honeycomb lattice) can be parametrised by (Nienhuis 1982, 
Dotsenko and Fateev 1984) 

21r lr 

2 - 1 / N  2 N - 1  
n = -2 cos - - 2 c o s -  - 1 s N < m .  

Table 1. Possible fractal dimensionalities for percolation. 

X 2 3  4 5 6 7 8 9 10 

7 4 3 D 2 3  a - 2s 16 3 a 51 a . g o  
Dspprox 2 1.896 1.75 1.5625 1.333 1.0625 0.75 0.396 0 
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Thus N = 5 corresponds to n = 0, i.e. self-avoiding walks (SAW) or linear polymers (de 
Gennes 1972). The dimension DsAW=:-1.33 follows from (3) if x = 6 .  Since both 
percolation and S A W  correspond to the same conformal field theory, we believe that 
this is the case also for the third purely geometrical model we are aware of, namely 
branched polymers or  lattice animals (LA).  This conjecture is corroborated by the fact 
that a model can be defined which yields both percolation and LA in different limits 
(Harris and Lubensky 1981). The best estimate of the LA dimension, DLk- 
0.6406 * 0.0001 (Kertksz 1986) is very close to our prediction for x = 5, D = % = 1.5625 
or D-' = 0.6400. Unfortunately, the discrepancy seems to be somewhat too large to 
be attributable to statistical errors. 

In table 2 we list estimates for the fractal dimensions of the different subsets, 
together with the value from (3) which gives the best correspondence. There are three 
discrepancies. 

(i) Most workers obtain a D,,, in the range 1.1-1.2. This seems to be in contradic- 
tion with the only possibility from (3), Dmi, = = 1.0625. However, Edwards and 

Table 2. Comparison of our conjecture (3) with previously obtained numerical estimates 
(floating-point numbers) and exact and conjectured values (rational numbers). 

Subset D measured D conjectured 

Percolation cluster 
Stanley (1977) 

Red bonds 
Coniglio (1981, 1982) 

Hull 
Voss (1984) 
Sapoval et a/  (1985 j 
Grassberger (1986) 
Ziff (1986) 

Unscreened perimeter 
Grossman and Aharony (1986) 

Internal dangling bonds 
Grossman and Aharony (1986) 

Minimal path 
Alexandrowicz (1980) 
Pike and Stanley (1981) 
Grassberger (1983) 
Grassberger (1985) 
Hong and Stanley (1983) 
Havlin and Nossal (1984) 
Herrmann er al (1984) 
Edwards and Kerstein (1985) 

Herrmann er a/  (1984) 
Herrmann and Stanley (1984) 
Puech and Rammal (1983) 

Herrmann et a/  (1984) 

Nienhuis (1982) 

Derrida and de Size (1982) 
KertCsz (1986) 

Backbone 

Elastic backbone 

SAW 

Lattice animals 

%= 1.895 

= 0.75 

i= 1.75 

U l  
4 1  

3 
i 

1.74 * 0.02 

1.750*0.002 
1.751 *0.002 

1.37 * 0.03 

1.77 * 0.04 

(conjectured) 

4 -  3 - 1.333 

2 = 1.75 

l ?  
E-  I h  - 1.0625? 1.18*0.08 

1.12 * 0.02 
1.12 * 0.02 
1.13*0.01 
1.04 * 0.1 
1.16 * 0.04 
1.10*0.06 
1.021 *o.oos 

1.60*0.05 = 1.75? 
1.62 i 0.02 
1.68 * 0.02 

1.10* 0.05 

2 5  - ~ i ;  - 1.562S? 

D,," 

3- 3 -  1.333 

25- 

4 
T 

1.561 iO.001 
- 1.5625 

1.5610 * 0.0002 
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Kerstein (1985) have recently obtained a considerably lower value, using a different 
approach to overcome finite-size effects. Even though their Dmin= 1.02 is a bit too 
small, it shows that Dmi, = cannot be ruled out. Based on arguments given below, 
however, we suspect that the minimal path is not a fractal at all, but simply a curve 
of finite length, and thus Dmi, = 1. 

(ii) The estimates for DBB lie in the range 1.6-1.7, which is inconsistent with (3), 
which only yields the possibilities D = = 1.75 and D = 2 = 1.5625. This is a consider- 
able disappointment, because the backbone is such a conceptually simple subset which 
should correspond to a conformal field. However, it is notoriously difficult to measure 
(Stanley et al 1986). Perhaps some finite-size corrections along the lines of Edwards 
and Kerstein could bring down the value to D B B  =E= 1.5625, but we find this most 
unlikely. 

(i i i)  The dimensionality of doubly connected bonds (such that breaking both bonds 
in a pair cuts the fractal in two) is Ddouble =;= 1.5 (Aharony et a1 1986). This exact 
result does not agree with (31, which shows that care must be taken. The only 
explanation is that the doubly connected bonds do not correspond to a conformal 
field. Perhaps this fractal can be viewed as some sort of square of the red bonds. This 
would also explain why Coniglio’s (1981,1982) proof could be extended to this fractal. 

As mentioned above, the q-state Potts model for arbitrary q can be viewed as an 
interacting percolation problem (CWP). The derivation of this equivalence by Larsson 
(1986) is incorrect, but the conclusion is still valid, which was previously shown by 
Hu (1984). There is no conceptual problem in defining the same subsets of a CWP 

cluster as in  ordinary percolation. Also the O( n) model permits a geometrical interpre- 
tation for arbitrary n, the loop-gas model with a non-trivial loop fugacity (Nienhuis 
1982, Karowski and Rys 1986). Substituting (2) into the formula for the conformal 
dimensions ( l ) ,  we find only a few which can possibly describe fractals for all N (we 
require that O s  A(N) S 1, i.e. 0 s  D( N )  s 2). These dimensions are listed in table 3. 
We have also given the values of D for N = 1 (q  = 0, resistor network), N = 2 (q = 1,  
percolation, LA and SAW), N = 2 (q = 2 ,  king model) and N = a3 (q = 4, four-state 
Potts and X Y  models). Using the obvious inequalities, 

and the conjectured values for N = i, we can uniquely assign a dimension for arbitrary 
N to each subfractal. This is indicated in the right-hand column of table 3. Several 
points are worth noting. 

( i )  When N = 1,  Dred = 0 and DF = 2. All sites are connected to the infinite cluster 
and therefore there are no red links. 

(i i)  D s A W  only equals the thermal exponent of the O( n )  model for n = 0 (de Gennes 
1972). Since y , ( O ( n ) )  < 1 for n > 1 ,  it cannot describe an interacting SAW for all n. 

(i i i)  DsA,= D, for all N. This is intuitively very appealing, since the unscreened 
perimeter of a cluster is both linear (i.e. non-branching) and self-avoiding. 

(iv) There is no exponent which can be identified with the minimal path, because 
it would require D,,, 3 1 for all N and Dmi, = when N = 2. Therefore we conjecture 
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Table 3. Possible conformal dimensions A from (3) which can correspond to fractals for 
arbitrary N. The fractal dimensions D = 2 - 2 6  are listed for N = 1 (resistor network), 
N = f  (percolation, SAW and lattice animals), N = 2 (king) and N = 00 (four-state Potts, 
XU). 

Fractal dimension D 
Conformal 
dimension 
A(N) N = l  N = $  N = 2  N = W  

A22 

'3 1 

A33 

A2N,2N 

AN-2.N-3 

0 2 

0 
N + l  

2(2N - 1) 

3 5  
8N(2N-1) ' 

2 
N-1 

N 
- 

l o  
N(2N-1) 
2N+1 

8N 
- a 

2 
N-1 

2(2N - 1) 
(4N-2)2-1 
8N(2N - 1) 

f 
N2-1 

8N(2N - 1) 
2 

0 
9N2-1 

8N(2N-1) 

3(3N-2) 
S(2N-1) ' 
8(2N-1) a 

-- 

N + 2  

2 
(3 N -2)2  - 1 
8N(2N - 1) 
( N  + 2)2 - 1 

8N(2N - 1) 
0 

that 

D m i n  = max( 1, Drcd)  

i.e. that the minimal path is essentially linear for N < 2, while it is trapped by the red 
links for N 2. This indicates that the minimal path does not correspond to a conformal 
field. 

(v) gives the second magnetic exponent (den Nijs 1983), )+,>a It is tempting 
to speculate that it might describe a first correction to the power law for the mass of 
the percolation cluster, i.e. that 

M ( R ) = AR + B R ~ A ~  . . . . (4) 
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(vi)  The Sapoval er a1 (1985) conjecture 

DH = 1 + Dred  

holds for N = i  but not for other values of N. Therefore it probably lacks deeper 
significance. 

We have introduced the notion of conformal invariance into fractal physics. It 
appears that this approach is fruitful and yields a number of exact predictions. 
Unfortunately, the backbone dimension disagrees with numerical results, and possibly 
the lattice animal dimension does so as well. Despite these discrepancies, we think 
that the fractal dimensionalities fit rather well into the magic formula (3). We have 
managed to identify fractals for all x except x = 7 (D = g) and x = 9 (D = g). If these 
x also describe fractals, they must be of topological dimension 0, i.e. disconnected. 
For x > 10, (3) probably gives correction-to-scaling exponents, defined in analogy with 

There is one difference between the backbone and the minimal path on the one 
hand, and the other subsets on the other. To define the former, one must single out 
a preferred direction, while the definition of the latter can be made isotropically. This 
may be a reason for the apparent failure of conformal invariance to predict these 
dimensions. 

It would be interesting to perform numerical experiments for N # $. Unfortunately, 
CWP is extremely difficult to simulate, because the cluster fugacity introduces long-range 
interactions. However, as argued by Larsson (1986), the Coniglio-Klein (1980) droplet 
construction can probably be viewed as a simulation of CWP. Thus, by measuring the 
subsets of droplets for q = 2, 3 and 4 ( N  = 2, 3 and a), it should be possible to check 
the conjectures of table 3. 

We have only considered static properties of the cluster. Dynamic exponents like 
the spectral dimension and hybrid models like SAW on the cluster intuitively seem to 
require further input. As mentioned above, it also appears that the backbone does not 
fit our prediction. 

In conclusion, it appears that, in two dimensions, conformal invariance is capable 
of satisfying Stanley's (1984) request for a simple principle governing the fractal 
dimensions. However, in this work we have only played games with Kac's formula 
( l ) ,  without any deeper understanding. It would be of great interest to understand 
what fractal is connected to what conformal dimension from fundamental principles. 

(4). 
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